Problem Statement
You are given an integer N. Find the number of the positive divisors of N!, modulo 109+7.
Constraints
- 1≤N≤103
Input
- The input is given from Standard Input in the following format:
- N
Output
- Print the number of the positive divisors of N!, modulo 109+7.
Sample Input 1
3
Sample Output 1
4
There are four divisors of 3! =6: 1, 2, 3 and 6. Thus, the output should be 4.
Sample Input 2
6
Sample Output 2
30
Sample Input 3
1000
Sample Output 3
972926972
解析:分解定理可知,把2~N每个数分解质因数并统计每个质因数出现的个数,然后由公式得出因子个数(a[2]+1)(a[3]+1)(a[4]+1)*……(a[n]+1),前提是a[i]不为0,为0是没有质因数
1 | #include <cstdio> |
Thank for you like!